
Weighted sum for single neuron: $z = \mathbf{w}\mathbf{x}$

Weighted sums for fully connected layer: $\mathbf{z} = W\mathbf{x}$

Weighted sums for fully connected layer for mini-batch: Z = WX

Recurrent layer:
$$\mathbf{h}^{(t)} = tanh(W\mathbf{h}^{(t-1)} + U\mathbf{x}^{(t)} + \mathbf{b})$$

NOTE: Bias term is implicit in all but the recurrent case above

From Learning Deep Learning by Magnus Ekman (ISBN: 9780137470358, www.ldlbook.com). Copyright 2022 NVIDIA Corporation. All rights reserved.

Datasets

Typical splits

Big dataset: 60/20/20 (train/validation/test)

Small dataset: 80/20 (train/test) and k-fold cross-validation

Training algorithm variations

Algorithm	Descript
Stochastic gradient descent (SGD)	Gradient of training
Momentum	Addition depends adjustme
AdaGrad	Variation learning i
Adam	Variation rate and
RMSProp	Variation using the gradients

Regularization techniques

L1/L2 RegularizationEarly stoppingDropoutAdd a weight penalty to error function:
 $L1 = \lambda w$ $L2 = \lambda w^2$ $\int_{0}^{0} \int_{0}^{0} \int_{0}^{$

tion

t is computed based on a mini-batch ng examples.

to SGD where weight adjustment s on gradient from previous ents as well as the current gradient.

n on SGD that adaptively adjusts the rate during training.

on SGD with both adaptive learning momentum.

on SGD that normalizes gradient e root mean square (RMS) of recent s.

Keeping gradients healthy

Technique	Mitigates vanishing gradients	Mitigates exploding gradients
Glorot or He weight initialization	Yes	No
Batch normalization	Yes	No
Nonsaturating neurons, e.g., ReLU	Yes	No
Gradient clipping	No	Yes
Constant error carousel	Yes	Yes
Skip connections	Yes	No